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INTRODUCTION

Knowledge of an animal’s behavior can inform
 species conservation and management by revealing
how individuals respond to environmental conditions

(Suther land 1998, Caro 1999, Cooke et al. 2014).
Although visual observation is the most direct
method to study animal behavior, it is impractical for
many species. Innovations in electronic logging and
tracking devices have provided new methods to
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ABSTRACT: Tri-axial accelerometers have been used to remotely identify the behaviors of a wide
range of taxa. Assigning behaviors to accelerometer data often involves the use of captive animals
or surrogate species, as their accelerometer signatures are generally assumed to be similar to
those of their wild counterparts. However, this has rarely been tested. Validated accelerometer
data are needed for polar bears Ursus maritimus to understand how habitat conditions may in -
fluence behavior and energy demands. We used accelerometer and water conductivity data to
remotely distinguish 10 polar bear behaviors. We calibrated accelerometer and conductivity data
collected from collars with behaviors observed from video-recorded captive polar bears and
brown bears U. arctos, and with video from camera collars deployed on free-ranging polar bears
on sea ice and on land. We used random forest models to predict behaviors and found strong
 ability to discriminate the most common wild polar bear behaviors using a combination of
accelerometer and conductivity sensor data from captive or wild polar bears. In contrast, models
using data from captive brown bears failed to reliably distinguish most active behaviors in wild
polar bears. Our ability to discriminate behavior was greatest when species- and habitat-specific
data from wild individuals were used to train models. Data from captive individuals may be
 suitable for calibrating accelerometers, but may provide reduced ability to discriminate some
behaviors. The accelerometer calibrations developed here provide a method to quantify polar
bear behaviors to evaluate the impacts of declines in Arctic sea ice.

KEY WORDS:  Activity · Behavior · Polar bear · Ursus maritimus · Acceleration · Accelerometer ·
Brown bear · Ursus arctos
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study the behavior, movement, physiology, energetic
rates, and environmental conditions of wildlife that
may otherwise be difficult or impossible to monitor
(Ropert-Coudert & Wilson 2005, Cooke 2008, Wilson
et al. 2008, Bograd et al. 2010, Costa et al. 2010,
Wilmers et al. 2015).

Tri-axial accelerometers, which collect high fre-
quency measures of acceleration in the form of gra -
vitational and inertial velocity (Brown et al. 2013),
have provided a means to remotely identify animal
behaviors (Yoda et al. 1999, Watanabe et al. 2005).
Accelerometers have been particularly useful in
studying widely dispersed animals or those occurring
in remote habitats, such as marine mammals and
birds (Brown et al. 2013). Once calibrated, tri-axial
accelerometer data from wild animals can be used to
remotely identify behaviors such as resting, walking,
running, and even feeding events (Yoda et al. 2001,
Shepard et al. 2008, Wilson et al. 2008, Watanabe &
Takahashi 2013, Williams et al. 2014). Calibration
typically involves time-synchronizing behavioral ob -
servations with their associated accelerometer read-
ings, which often necessitates the use of captive ani-
mals or surrogate species (e.g. Yoda et al. 2001,
Shepard et al. 2008, Nathan et al. 2012, Campbell et
al. 2013). Alternatively, animal-borne video cameras
can be used to directly calibrate accelerometers (e.g.
Watanabe & Takahashi 2013, Nakamura et al. 2015,
Volpov et al. 2015), but cameras can be expensive
and can only collect data over limited durations.

Polar bears Ursus maritimus typically occupy re -
mote environments, and few quantitative data exist
on their behaviors or activity budgets. Much of what
is known about polar bear behavior on the sea ice
comes from coastal indigenous resident knowledge
(e.g. Nelson 1966, Kalxdorff 1997, Kochnev et al.
2003, Voorhees et al. 2014) and direct observational
research limited to 2 locations over limited time pe -
riods (Stirling 1974, Stirling & Latour 1978, Hansson
& Thomassen 1983, Stirling et al. 2016). Satellite
telemetry has been used to track polar bears in some
subpopulations since the late 1970s (Schweinsburg &
Lee 1982, Taylor 1986) and has helped to identify
important habitats (Ferguson et al. 2000, Mauritzen
et al. 2003, Durner et al. 2009, Wilson et al. 2014).
However, detailed behavioral data in association
with habitat conditions are lacking. Recent declines
in Arctic sea ice have already caused declines in
abundance, survival, or body condition of polar bears
in some subpopulations (Stirling et al. 1999, Regehr
et al. 2007, Rode et al. 2010, 2012, Bromaghin et al.
2015, Obbard et al. 2016) and models project increas-
ing negative impacts in the 21st century (Amstrup et

al. 2008, Hunter et al. 2010, Molnár et al. 2010,
Atwood et al. 2016). In order to better predict the
impacts of projected sea ice loss on polar bears, it will
be important to understand the behavioral and
physio logical mechanisms driving current declines
(Vongraven et al. 2012, Atwood et al. 2016). Ac -
celerometers could be used in combination with
satellite telemetry to better understand the behav-
ioral consequences of sea ice loss. This mechanistic
information would allow for improved assessment of
the relationships between habitat loss, individual
health, and vital rates in polar bear populations.

In this study, we developed a method to quantify
wild polar bear behaviors using accelerometers and
conductivity sensor data, validated through animal-
borne video camera data. Additionally, we evaluated
the effectiveness of using accelerometer data from
captive polar and brown bears U. arctos to predict
behaviors of wild polar bears. Though it is generally
assumed that accelerometer signatures of captives or
surrogates are similar to those of their instrumented
wild counterparts (Williams et al. 2014, McClune et
al. 2015, Wang et al. 2015, Hammond et al. 2016), this
has rarely been tested. Captive individuals may
exhibit different behaviors and/or kinematics than
wild counterparts (McPhee & Carlstead 2010), which
could potentially influence accelerometer signatures.
Because polar bears use both sea ice and terrestrial
habitats and because differences in habitat substrate
or gradient could also affect accelerometer signa-
tures (Bidder et al. 2012, Shepard et al. 2013,
McClune et al. 2014), we examined data from wild
polar bears in both of these habitats. Lastly, because
sampling frequency affects the longevity of accelero -
meters during deployment as well as computational
power for analyses, we evaluated the ability of acce -
lero meters to predict wild polar bear behaviors using
3 different sampling frequencies (16, 8, and 4 Hz).

MATERIALS AND METHODS

Accelerometer recordings on captive bears

We deployed collars with archival loggers (TDR10-
X-340D; Wildlife Computers) on 3 adult female polar
bears Ursus maritimus housed at the Alaska Zoo,
Oregon Zoo, and San Diego Zoo, USA, as well as 2
adult female brown bears U. arctos housed at the
Bear Research, Education, and Conservation Center
at Washington State University (WSU; Table 1), USA.
Ar chi val loggers recorded tri-axial acceleration (m
s−2) at 16 Hz (range: ±20 m s−2), time-of-day, and
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wet/dry conductions (via an on-board conductivity
sensor; Fig. 1). Conductivity data were sampled at
1 Hz. Bears at the Oregon and San Diego Zoos were
trained to voluntarily place their heads into crates in
which collars could be applied or removed, and wore
collars for 1 to 4 h sessions. Bears at the Alaska Zoo
and WSU were anesthetized for collaring, with a
combination of tiletamine HCl and zolazepam HCl
(Telazol®; Pfizer Animal Health) and dexmedeto -
midine HCl (Dexdomitor®; Pfizer Animal Health)
(Teisberg et al. 2014). Following collar placement, the
effect of the anesthetic were reversed with atipame-
zole HCl (Antisedan®; Pfizer Animal Health). We
used release mechanisms (Lotek Wireless) to remove
collars from bears at the Alaska Zoo and WSU. We

matched accelerometer recordings to
the behaviors of captive bears while
they moved freely around enclosures
based on visual examination of time-
stamped video recordings (Sony cam-
corder model DCR-TRV280 or OpenEye
Digital Video Security Solutions).

Accelerometer recordings on
free-ranging polar bears

We deployed GPS-equipped video
camera collars (Exeye) and archival log-
gers (TDR10-X-340D; Wild life Comput-
ers) on 4 adult female polar bears and 1
subadult female polar bear captured on
the sea ice of the southern Beaufort Sea

in April 2014 and 2015 (hereafter ‘ice bears’) and 2
subadult polar bears (1 male and 1 female) captured
on land on Akimiski Island, Nunavut, Canada, in
September 2015 (hereafter ‘land bears’; Table 1).
Video collars, including archival  loggers and release
mechanisms, weighed 1.6 to 2.1 kg (0.8 to 1.5% of
body mass of bears in this study). We captured polar
bears by injecting them with immobilizing drugs
through projectile syringes fired from a helicopter.
On the sea ice, we anesthe tized bears using a combi-
nation of tiletamine HCl and zolazepam HCl (Tela-
zol®) with no reversal (Stirling et al. 1989). On land,
we anesthetized bears with a combination of medeto-
midine (Domitor®; Pfizer Animal Health) and tileta-
mine HCl and zolazepam HCl (Telazol®) and
reversed with atipamezole HCl (Antisedan®) (Cattet
et al. 1997). Archival loggers were attached to collars
in the same location and orientation as captive
deployments (Fig. 1) and similarly recorded tri-axial
acceleration at 16 Hz (range: ±20 m s−2), time-of-day,
and wet/dry conductions (via an on-board conductiv-
ity sensor). Conductivity data were sampled at 1 Hz.
Video cameras were programmed to record at vary-
ing frequencies during daylight periods (see
Table S1 in the Supplement at www.int-res.com/
articles/ suppl/ n032 p019 _ supp. pdf) and programmed
to turn off if the temperature of the collar fell below
−17°C to protect video equipment. Collars deployed
on ice and land bears were recovered 4 to 23 d fol-
lowing deployment, either by recapture of the indi-
vidual or by remote activation of the collar release
and retrieval of the dropped collar by the field crew.
We matched accelerometer data to behavior of ice
and land bears based on visual examination of the
time-stamped video recordings from the collar.
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Species Sex Age class Body Location
mass (kg)

Polar bear Female Adult 288 Alaska Zoo
Polar bear Female Adult 212 Oregon Zoo
Polar bear Female Adult 237 San Diego Zoo
Brown bear Female Adult 126 Washington State University
Brown bear Female Adult 126 Washington State University
Polar bear Female Adult 173 Southern Beaufort Sea
Polar bear Female Adult 176 Southern Beaufort Sea
Polar bear Female Adult 199 Southern Beaufort Sea
Polar bear Female Adult 172 Southern Beaufort Sea
Polar bear Female Subadult 141 Southern Beaufort Sea
Polar bear Male Subadult 186 Akimiski Island
Polar bear Female Subadult 140 Akimiski Island

Table 1. Polar bears Ursus maritimus and brown bears U. arctos wearing col-
lars with tri-axial accelerometers that were video recorded (captive bears) or 

that wore video-equipped collars (wild bears)

Fig. 1. Orientation of an archival logger containing a tri-
 axial accelerometer attached to a collar for use on polar 

Ursus maritimus and brown bears U. arctos

http://www.int-res.com/articles/suppl/n032p019_supp.pdf
http://www.int-res.com/articles/suppl/n032p019_supp.pdf
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Behaviors

Behaviors were annotated based on the video data
on a per second basis. For bears that were anesthe -
tized, we excluded behaviors on the day of capture
and during retrieval of the collar. Resting behaviors
included standing, sitting, and lying down. Head
movements while standing, sitting, or lying down
were included as resting behaviors, but limb move-
ments were treated as transitionary behaviors (Knud-
sen 1978, Williams 1983). Swimming included
 surface swimming and diving. We excluded from
ana lyses any behaviors that were not indicative of
natural movements in captive bears (e.g. stereotypic
behaviors), were rare (e.g. fighting, breeding, drink-
ing), were transitionary, or were non-descript.

Modeling

We derived summary statistics from the accelerom-
eter data and linked the accelerometer data with cor-
responding behaviors of interest (SAS version 9.3;
SAS Institute). We converted accelerometer meas-
ures from m s−2 to g (1 g = 9.81 m s−2). We calculated
magnitude (Q) as a fourth dimension, where

(Nathan et al. 2012). We used a 2 s running mean of
the raw acceleration data to calculate static accelera-

tion (gravitational acceleration) and subtracted the
static acceleration from the raw acceleration data to
calculate dynamic acceleration (Wilson et al. 2006,
Shepard et al. 2008). We calculated overall dynamic
body acceleration (ODBA) as the absolute sum of
dynamic acceleration across the 3 axes (Wilson et al.
2006). We used a Fast Fourier Transform to calculate
the dominant power spectrum (dps) and frequency
(fdps) for each axis (Watanabe et al. 2005, Shamoun-
Baranes et al. 2012). In total, we derived 25 predictor
variables based on previous accelerometer studies
(e.g. Watanabe et al. 2005, Nathan et al. 2012,
Shamoun-Baranes et al. 2012, Wang et al. 2015). Pre-
dictor variables were extracted from the accelerome-
ter data over 2 s intervals; mean conductivity data
(wet/dry) was also extracted over 2 s intervals using
program R (R Core Team 2014) (Table 2). Video-
linked behaviors that lasted less than 2 s were
excluded from analyses. We used a random forest
supervised machine learning algorithm (Breiman
2001) in R (‘RandomForest’ package) to predict polar
bear behaviors. Random forest models use multiple
classification trees from a random subset of predictor
variables and then replicate this process over multi-
ple iterations using a subset of the data for each iter-
ation to determine the best variables for making pre-
dictions (Breiman 2001). An estimate of error is
derived by using the remaining data not used in each
iteration to test the predictive ability of the model,
which is termed the ‘out-of-bag’ (OOB) error rate

Q heave +surge +sway2 2 2=
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Parameter Label Definition

Static acceleration (g) staticX, staticY, staticZ, staticQ Mean static acceleration along the surge, 
heave, sway, and magnitude axes

Maximum dynamic body mdbaX, mdbaY, mdbaZ, mdbaQ Maximum dynamic body acceleration along the 
acceleration (g) surge, heave, sway, and magnitude axes

Standard deviation dynamic stdbaX, stdbaY, stdbaZ, stdbaQ Standard deviation dynamic body acceleration 
body acceleration (g) along the surge, heave, sway, and magnitude axes

Overall dynamic body odbaX, odbaY, odbaZ, ODBA Mean dynamic acceleration body acceleration along 
acceleration (g) the surge, heave, and sway axes. ODBA = odbaX + 

odbaY + odbaZ

Dominant power spectrum dpsX, dpsY, dpsZ, dpsQ Maximum power spectral density of dynamic accelera-
(g2 Hz−1) tion along the surge, heave, sway, and magnitude axes

Frequency at the dominant fdpsX, fdpsY, fdpsZ, fdpsQ Frequency at the maximum power spectral density of 
power spectrum (Hz) dynamic acceleration along the surge, heave, sway, 

and magnitude axes

Mean wet/dry wetdry Mean conductivity determination of whether the tag 
is wet or dry (range: 0−255)

Table 2. Parameters extracted from tri-axial accelerometer and conductivity data and used in random forest models to predict 
wild polar bear Ursus maritimus behaviors. Respective acceleration measures from the surge (X), heave (Y), sway (Z), and

magnitude (Q) axes
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(Breiman 2001, Liaw & Wiener 2002). The random
forest algorithm has previously shown high accuracy
(>80%) for predicting animal behaviors from
accelerometer data (Nathan et al. 2012, Resheff et al.
2014, Graf et al. 2015, Lush et al. 2015, Rekvik 2015,
Wang et al. 2015, Alvarenga et al. 2016). We fit 500
classification trees to each training dataset and used
a random subset of 5 predictor variables for each split
in the tree.

Analyses

Unbalanced datasets can bias the predictive ability
of classification algorithms toward the most dominant
classes (Chen et al. 2004). Therefore, we performed 3
initial analyses to test the effect of uneven distribu-
tions on predictive ability. The first analysis used an
uneven distribution in which for ice and land bears,
we randomly selected 70% of each behavior for the
training dataset and used the remaining 30% to test
the predictive ability of the random forest algorithm
(e.g. Nathan et al. 2012, Alvarenga et al. 2016). For
captive polar and brown bears we used the entire
datasets to train the random forest algorithm. The
second analysis used a subsampling approach in
which we attempted to reduce the uneven distribu-
tion of more frequent behaviors (e.g. resting) in our
training dataset. To reduce the uneven distribution of
behaviors in the dataset from ice bears, we randomly
selected 5% of the resting behaviors, 30% of the
walking behaviors, and 70% of each of the remain-
ing behaviors for training the random forest algo-
rithm. We used the remaining data from ice bears for
testing predictions. To reduce the uneven distribu-
tion of the dataset from land bears, we randomly
selected 5% of the resting behaviors and 70% of
each of the remaining behaviors for training and
used the remaining data to test predictions. To re -
duce the uneven distribution of the datasets from
captive polar bears and brown bears, we randomly
selected 10% of the resting behaviors, 30% of the
walking behaviors, and 100% of each of the remain-
ing behaviors for training the random forest algo-
rithm. The third analysis used a completely balanced
distribution in which we used identical sample sizes
of 500 observations for each behavior in the training
dataset and the remaining observations to test and
excluded behaviors with less than 500 observations.
Based on these 3 analyses, we used the sampling
 distribution (i.e. uneven, subsampled, or balanced
distribution) with the greatest predictive ability for
further analyses.

To evaluate our ability to predict behaviors of ice
bears, we used 3 different datasets to train the ran-
dom forest models and evaluated the ability of each
of these models. First, we used a random subset of
the data from ice bears as the training dataset and
the remaining data from ice bears to test predictions
(testing dataset). Second, we used the data from cap-
tive polar bears as the training dataset. Third, we
used the data from captive brown bears as the train-
ing dataset.

To evaluate our ability to predict behaviors of land
bears, we conducted 4 additional analyses. First, we
used a random subset of the data from land bears as
the training dataset and the remaining data from
land bears to test predictions (testing dataset). Sec-
ond, we used the training data from ice bears as the
training dataset. Third, we used the training data
from captive polar bears as the training dataset.
Fourth, we used the training data from captive brown
bears as the training dataset.

To examine the effect of sampling frequency on
our ability to discriminate behaviors, we subsampled
our 16 Hz accelerometer data to lower data acquisi-
tion rates of 8 and 4 Hz using SAS, and repeated the
predictive analyses above for both ice and land
bears.

Predicted behaviors were categorized as true posi-
tive (TP) if they correctly matched the actual behav-
ior, true negative (TN) if they correctly identified as a
different behavior, false positive (FP) if they incor-
rectly identified the behavior, and false negative
(FN) if they incorrectly identified as a different be -
havior. We evaluated the predictive abilities of these
models based on Matthews’ correlation coefficient
(MCC; e.g. Basu et al. 2013, Martins et al. 2016), the
percent precision, recall, and F-measure. We used
MCC in place of accuracy due to the unbalanced
nature of our dataset. 

MCC, ,

provides a measure of the agreement between the
predicted and actual classifications, where +1 repre-
sents a perfect prediction and −1 represents total dis-
agreement (Matthews 1975). Precision is the propor-
tion of positive classifications that were correctly
classified (TP/TP + FP), recall is the probability that a
behavior will be correctly classified (TP/TP + FN),
and F-measure is the harmonic mean of precision
and recall (2 × precision × recall/precision + recall).
We used 2 sample t-tests to evaluate whether MCC,
precision, and recall differed significantly using a
16 Hz sampling frequency compared to either an 8 or

TP TN–FP FN

TP+FP TP+FN TN+FP TN+FN

× ×
( ) × ( ) × ( ) × ( )
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4 Hz sampling frequency based on the ice and land
datasets.

RESULTS

Behavior on the sea ice

Video collars on ice bears Ursus maritimus re -
corded 14 to 55 h of video (x− = 38 h, SD = 17 h, n = 5).
For predicting the behavior of ice bears, we collected
a total of 140 h of video-linked accelerometer data
from ice bears, 37 h from captive polar bears, and
72 h from captive brown bears U. arctos. We identi-
fied 10 different behaviors from ice bears, with rest-
ing, walking, and eating being the most prevalent
(Table 3). Ice bears ate recently killed adult, sub -
adult, or pup ringed seals Pusa hispida, seal carcas -
ses, bowhead whale Balaena mysti cetus carcasses, or
unidentifiable carcasses. Captive polar bears con-
sumed fish, and captive brown bears ate dry omni-
vore chow. Captive brown bears also grazed on
grass, which was excluded from analyses predicting
behaviors of ice bears, but was included as eating for
predicting behaviors of land bears.

Our models using an uneven distribution of behav-
iors in which we used 70% of each behavior from ice
bears and all of the available data from captive polar
or brown bears exhibited 5% greater predictive abil-
ity overall compared to the subsampled distribution,
and 7% greater predictive ability overall compared
to the balanced distribution based on
F-measure (see Table S2 in the Sup-
plement at www. int-res. com/ articles/
suppl/ n032 p019 _ supp. pdf). In particu-
lar, the data sets with an uneven distri-
bution ex hibited greater ability to dis-
criminate less frequent behaviors such
as swimming, eating, and running
(Table S2). Therefore, we used the
datasets with uneven distributions for
subsequent analyses (Table 3).

Our model with training data from
ice bears had an OOB error rate of
2.0% and exhibited the greatest pre-
dictive abilities for all 10 behaviors
(Fig. 2) compared to all other models
tested. Our models with training data
from captive polar bears and brown
bears had OOB error rates of 3.7 and
0.5% respectively, indicating that both
models performed well in discriminat-
ing captive behaviors. Both the ice

bear and captive polar bear models exhibited strong
predictive ability for identifying resting and walking
behaviors in wild bears (>90% MCC, precision, re -
call, and F-measure; Table 4 & Table S3 in the Sup-
plement). Predictive abilities for other behaviors var-
ied, with swimming and head shaking exhibiting
strong predictive ability using the ice bear model
(>75% MCC, precision, recall, and F-measure), but
lower predictive ability for eating, running, pounc-
ing, grooming, digging, and rolling (Fig. 2, Tables 4
& 5). The model from ice bears had particularly
greater ability than the captive polar bear model for
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Fig. 2. Ability (F-measure) of the random forest model to predict 10 behaviors
of polar bears Ursus maritimus on the sea ice from 3 different training
datasets of accelerometer data. Ice bears: polar bears on the sea ice of the

southern Beaufort Sea

Behavior Captive Captive Wild Wild
polar brown ice land
bears bears bears bears

Rest 53656 104838 163301 43132
Walk 8962 33059 36083 958
Swim 423 0 703 0
Eat 2108 973 2100 1529
Run 0 0 943 0
Pounce 458 0 49 0
Groom 3729 432 1138 289
Dig 405 0 1194 0
Head shake 86 14 435 19
Roll 87 0 1473 0

Table 3. Number of 2 s long behaviors used in random forest
training datasets for predicting behaviors of wild polar bears
Ursus maritimus. Ice bears: polar bears on the sea ice of the
southern Beaufort Sea. Land bears: polar bears on Akimiski 

Island, Nunavut

http://www.int-res.com/articles/suppl/n032p019_supp.pdf
http://www.int-res.com/articles/suppl/n032p019_supp.pdf


Pagano et al.: Accelerometers identify polar bear behaviors

swimming, pouncing, and digging (Fig. 2, Table S3).
The captive brown bear model provided weaker abil-
ity to distinguish behaviors of ice bears for walking,
eating, and grooming (<65% MCC and F-measure),
but reliably distinguished resting (Fig. 2, Table S4).

Using the model from ice bears, eating had a high
rate of false positive classifications resulting from
digging behavior being incorrectly classified as eat-
ing (Table 5) as well as a high rate of false negative
classifications with eating behavior incorrectly classi-
fied as either resting or walking (Table 5). A post hoc
test using only feeding behavior while eating a
recently killed ringed seal within the training and
testing datasets failed to improve our ability to dis-
criminate eating (MCC = 0.61, precision = 0.67, recall
= 0.56, F-measure = 0.61). Additionally, running was
often misclassified as walking, whereas rolling was
often misclassified as resting (Table 5).

The most important predictors using the model from
ice bears were static acceleration in the heave

(staticY) and surge directions (staticX), wet/dry con-
ductivity (wetdry), and frequency at the dominant
power spectrum in the surge direction (fdpsX; Fig. 3).
Differences in the intensity of behaviors were dis-
cernible in the ODBA measures, with head shaking
having the greatest ODBA and resting having the
lowest (Table S5). Eating and swimming showed simi-

25

Behavior MCC Precision Recall F-measure

Rest 0.973 0.992 0.997 0.994
Walk 0.971 0.964 0.989 0.976
Swim 0.887 0.957 0.823 0.885
Eat 0.674 0.677 0.677 0.677
Run 0.709 0.835 0.604 0.701
Pounce 0.700 0.833 0.588 0.690
Groom 0.417 0.658 0.266 0.379
Dig 0.532 0.712 0.400 0.513
Head shake 0.818 0.839 0.798 0.818
Roll 0.754 0.821 0.696 0.753

Table 4. Performance of a random forest model using ac-
celerometer data from polar bears Ursus maritimus on the
sea ice to predict behaviors of bears on the sea ice as veri-
fied by video data. MCC: Matthews’ correlation coefficient

Rest Walk Swim Eat Run Pounce Groom Dig Head shake Roll

Rest 69760 31 33 99 1 0 281 28 0 111
Walk 115 15295 10 111 153 4 15 102 26 41
Swim 6 2 246 1 0 0 1 0 0 1
Eat 35 51 2 608 1 0 45 145 0 11
Run 0 44 0 1 243 0 0 1 1 1
Pounce 0 0 0 0 0 10 0 2 0 0
Groom 17 2 0 33 0 0 129 13 0 2
Dig 2 16 0 44 0 2 9 203 0 9
Head shake 2 6 0 0 3 0 0 2 146 15
Roll 45 13 8 1 1 1 5 2 10 437

Table 5. Cross-validation comparing predicted behaviors (rows) from accelerometer analyses of polar bears Ursus maritimus
on the sea ice to actual behaviors (columns) confirmed by video recordings. Correct classifications are denoted in bold. See 

Table 4 for performance statistics in predicting behaviors

Fig. 3. Variable importance plot from the random forest
model of accelerometer data from polar bears on the sea ice.
The importance plot provides a relative ranking of parame-
ters in which higher values indicate parameters that con-
tributed more toward classification accuracy. Mean de-
crease in accuracy is normalized by dividing by the standard
errors of the parameters (i.e. z-score). See Table 2 for de-

scription of parameters
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lar mean ODBA values, but had differing mean static
acceleration values (Table S5). Eating and grooming
had low values of static acceleration in the heave di-
rection (staticY), which was indicative of a head-down
posture. Walking and running exhibited periodic un-
dulating patterns in static acceleration in the heave
direction (staticY; Fig. 4 & Fig. S1 in the Supplement),
which was indicative of the bear’s head moving up
and down as it stepped. Wet/dry conductivity while
swimming was lower for wild polar bears (x– = 81.9, SD
= 81.5) than captive polar bears (x– = 205.3, SD = 57.8)
and lower than all other behaviors (all x– > 234). A post
hoc test excluding the conductivity variable reduced
the ability of the algorithm to correctly identify swim-
ming be haviors using the training data set for ice
bears (MCC = 0.47, pre cision = 0.77, recall = 0.29, F-
measure = 0.42) with a high rate of swimming behav-
iors misclassified as resting.

Behaviors on land

Video collars on land bears recorded 19 to 36 h of
video (x– = 27 h, SD = 12 h, n = 2) and in total we col-
lected 36 h of video-linked accelero meter data for the
behaviors of interest. We identified 5 different be ha -
viors from land bears, with resting being the most
prevalent, followed by eating (Table 3). Eating on
land consisted of berries, primarily crowberries Em -
petrum nigrum.

Our model with training data from land bears had
an OOB error rate of 0.5% and had the greatest
 success in discriminating on-land behaviors (Fig. 5,
Table S6). All behaviors, except for grooming and
head shaking, had MCC, precision, recall, and F-
measure values >90% using the model from land
bears (Fig. 5, Table S6). In particular, the model from
land bears was able to distinguish eating (MCC =
0.95, precision = 0.95, recall = 0.96, F-measure =
0.95), which was not possible with the other datasets.
Our model with training data from ice bears had suc-
cess in discriminating resting behaviors on land
(MCC = 0.60, precision = 0.96, recall = 1.0, F-mea-
sure = 0.98) and walking on land (MCC = 0.82, preci-
sion = 0.89, recall = 0.76, F-measure = 0.82), but eat-
ing was often misclassified as resting or walking (FP).
The captive polar bear model performed similarly to
the model from ice bears for discriminating behaviors
on land (Fig. 5). The captive brown bear model per-
formed less well than the other models for discrimi-
nating walking on land, but otherwise performed
similarly to the models from ice bears and captive
polar bears (Fig. 5).

Sampling frequency

The OOB error rate using the data from ice bears in-
creased from 2.0 to 2.2% using an 8 Hz sampling fre-
quency and to 2.6% using a 4 Hz sampling frequency.
OOB error rate using data from land bears increased
from 0.5 to 0.6% at 8 Hz and to 0.8% at 4 Hz. Predic-
tive ability using an 8 Hz sampling frequency was
nearly identical to 16 Hz among all behaviors using
the dataset from ice bears (t58 = 0.70, p = 0.24) and
land bears (t28 = 0.61, p = 0.27) based on MCC, preci-
sion, and recall. Predictive ability using a 4 Hz sam-
pling frequency was lower than predictive ability us-
ing 16 Hz for ice bears (t55 = 1.8, p = 0.04), but not for
land bears (t27 = 0.59, p = 0.28). In particular, the
ability to discriminate the high intensity behaviors of
pouncing and head shaking declined using a 4 Hz
sampling rate (Fig. 6).

DISCUSSION

Our results show that tri-axial accelerometers in
combination with measures of conductivity can reli-
ably distinguish the 3 most common behaviors of
wild polar bears Ursus maritimus (resting, walking,
and swimming; Stirling 1974, Latour 1981, Hansson
& Thomassen 1983, Lunn & Stirling 1985). This will
provide a method to remotely document the activity
budgets of these far-ranging animals, which can be
further linked with location data from satellite collars
to examine the effects of habitat on behavior and
energy expenditure. Our results indicate that differ-
ences among habitats and species can impact the
ability to discriminate behaviors in wild individuals
using accelerometers. We found no loss in predictive
ability using an 8 Hz sampling frequency, which
would allow for twice the battery longevity of a 16 Hz
rate and reduce the computational power needed for
analyses. Although accelerometer studies on smaller
species appear to require greater sampling frequen-
cies (e.g. >30 Hz; Broell et al. 2013, Brown et al.
2013), our results are similar to data obtained by
Rekvik (2015) from captive brown bears U. arctos,
and by Wang et al. (2015) from captive mountain
lions Puma concolor, which both found little loss in
predictive ability at sampling frequencies ≥8 Hz.

Habitat effects

Our results indicate that accelerometer signatures
on sea ice are similar to signatures on land for most
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behaviors, but eating berries by land bears had a dis-
tinct signature that our ice bear model and captive
bear models misclassified as grooming, resting, or
walking. This highlights the value in linking obser-
vational and acce lero meter data from wild subjects
over multiple time periods and habitats, and the
importance of accounting for as many behaviors as
possible in training datasets. Knowledge of eating
frequency and du ration would provide insight in de -
termining foraging success, an im portant determi-

nant of individual re productive success
and survival (Stirling et al. 1999, Regehr et
al. 2007, 2010). Al though we had success
discriminating eating events by land bears,
we had lower precision and recall in dis-
criminating eating events by ice bears. This
was likely related in part to the movement
pattern of bears eating berries, in which
they typically stood with their head down
and grazed. Conversely, bears eating on
the sea ice exhibited a variety of positions
including standing, sitting, and lying
down, and both tore pieces of food from
seals or gnawed on carcasses. Since most
kill events involve bears pouncing on their
seal prey (Stirling 1988, Derocher 2012),
we may be able to identify successful kills
based on the combination of a pouncing
signature followed by eating signatures
(e.g. Williams et al. 2014), but this requires
further evaluation. Additionally, feeding on
a seal would typically last for a prolonged

period; hence, if the model primarily predicted eat-
ing over a prolonged period this could be used as an
indication of a feeding event, but this also requires
further evaluation.

Use of captive animals and surrogate species

Our ability to discriminate behaviors was greatly
improved by including data from free-ranging polar
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bears rather than using data from captive bears
alone. However, resting and walking could be reli-
ably discriminated using data from either captive or
wild polar bears. This illustrates the value of collect-
ing data from captive individuals when data collec-
tion is difficult or impossible from wild counterparts.
However, data from captive brown bears exhibited
poorer performance for predicting active behaviors
in wild polar bears. This may be related to differ-
ences in walking kinematics between polar and
brown bears as well as potential differences in limb
lengths between the species (Renous et al. 1998).
Additionally, polar bears have longer necks relative
to their body size than other ursid species (DeMaster
& Stirling 1981), which could also affect accelero -
meter signatures from a neck-worn collar. Although
Campbell et al. (2013) proposed the use of surrogate
species to predict the behaviors of other species, our
findings suggest that polar bear accelerometer signa-
tures are likely species- and habitat-specific, at least
for distinguishing specific behaviors. The brown bear
model did reliably distinguish resting behavior in
wild polar bears, which suggests that surrogate spe-
cies could be used to distinguish coarse activity pat-
terns such as active versus inactive (e.g. Gervasi et
al. 2006, Ware et al. 2015).

Our analyses indicate that conductivity measures
are needed to reliably discriminate swimming.
Greater conductivity measures in captive polar bears
that were swimming in fresh water likely caused the
poorer performance for discriminating swimming in
wild polar bears that were swimming in salt water.
For pouncing, captive polar bears pounced on large
plastic barrels, which resulted in similar measures of
ODBA as wild counterparts, but had different signa-
tures of static acceleration (i.e. body posture). Dig-
ging by wild bears, which was often through snow
and ice into subnivean lairs to locate seals, exhibited
greater ODBA measures and slightly different static
acceleration than captive bears digging in snow and
ice. These results suggest that some behaviors of
captive bears may not fully reflect behaviors of their
wild counterparts, which further illustrates the value
of collecting simultaneous observational data (e.g. vi -
deo) from free-ranging individuals to calibrate ac -
celerometer-based behavioral data.

Accelerometer attachment

Regardless of which training dataset was used,
we found lower precision and recall for predicting
5 of the behaviors tested for bears on the sea ice.

Eating, grooming, and rolling had high rates of
misclassifications as resting, whereas running and
digging had high rates of misclassifications as
walking. These re sults suggest the random forest
algorithm could be prone to slightly overestimate
the amount of true resting and walking behaviors
in quantifying activity budgets. Our lower precision
and recall for discriminating some behaviors was
likely due in part to the attachment of the accel -
erometer on a collar. Al though a number of studies
have successfully discriminated behaviors using
accelerometers on collars (Watanabe et al. 2005,
Martiskainen et al. 2009, Soltis et al. 2012, McClune
et al. 2014, Lush et al. 2015, Rekvik 2015, Wang et
al. 2015), many of these studies limited their analy-
ses to 4 or 5 behaviors or documented high misclas-
sification rates for distinguishing some behaviors.
Wang et al. (2015) similarly reported low accuracy
of accelerometers on collars for predicting eating
and grooming by captive mountain lions, and Lush
et al. (2015) reported low ac curacy for predicting
some behaviors, including grooming, in wild brown
hares Lepus europaeus. Attach ment of the accel -
erometer to a collar, as opposed to attachment
directly on the animal, likely introduces noise in
the data due to independent collar motion (i.e. the
collar must be fitted to ensure animals do not
remove it, but loose enough to accommodate
potential changes in body mass) and may reduce
the ability of the accelerometer to detect some low
intensity movements (Shepard et al. 2008). The
effect of independent collar motion is evident in
our large values of ODBA when bears shook their
heads. This behavior may be useful for identifying
the end of a swim, as bears are known to shake
and roll in the snow following a swim. Additionally,
our ability to discriminate head shaking allows for
excluding it from potential energetic analyses using
accelerometers. Use of a higher sampling frequency
than was used in this study (i.e. >16 Hz) could
potentially improve the ability to discriminate some
fine-scale body movements (Nathan et al. 2012)
such as eating, though Wang et al. (2015) sampled
at 64 Hz and had low accuracy in discriminating
eating behaviors of captive mountain lions.

Video calibration

Having video-linked observational data from cam-
era-mounted collars on wild polar bears was the most
practical method to calibrate accelerometers on free-
ranging individuals. However, because the animal’s
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body was not visible in the video, some behaviors
may have been incorrectly classified. For example,
distinguishing walking versus running was often
challenging, as was determining when bears were
actively swimming versus resting in the water. Both
of these could have contributed to the misclassifica-
tions between running and walking and swimming
and resting. Additionally, the models had greater
success discriminating behaviors as sample sizes
increased. Although unbalanced datasets are known
to affect the predictive ability of random forest algo-
rithms (Chen et al. 2004), we found that the inclusion
of larger sample sizes in the training dataset was
more important than imbalance. This highlights the
value of calibrating accelerometers from multiple
individuals over prolonged periods.

CONCLUSIONS

Our results underscore the importance of thor-
oughly validating accelerometers for use in remote
detection of behavior, ideally on a species- and habi-
tat-specific level. The use of tri-axial accelerometers,
as shown here, will enable detailed assessments of
polar bear behaviors to better understand polar bear
habitat use and the implications for energy demands.
For example, measures of acceleration could be com-
bined with measures of oxygen consumption from
captive bears while resting, walking, and swimming
to both quantify activity budgets and estimate the
energetic costs of these behaviors (e.g. Wilson et al.
2006, 2012, Halsey et al. 2009, 2011, Gómez Laich et
al. 2011, Williams et al. 2014). Future advances are
needed that would enable remote transmission of
raw accelerometer data to further enhance the appli-
cability of these devices to animals occurring in
remote environments and obviate the need for sensor
recovery. As declines in sea ice are expected to in -
crease the activity rates of polar bears across much of
their range (Derocher et al. 2004, Molnár et al. 2010,
Sahanatien & Derocher 2012), the use of accelero -
meters provides a method to monitor the impacts of
habitat change on activity and energy budgets to
better understand the implications for body condi-
tion, reproductive success, and survival of this Arctic
apex predator.
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