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ABSTRACT
Quantification of fine-scale movement, performance, and energetics of hunting by
large carnivores is critical for understanding the physiological underpinnings of trophic
interactions. This is particularly challenging for wide-ranging terrestrial canid and felid
predators, which can each affect ecosystem structure through distinct hunting modes.
To compare free-ranging pursuit and escape performance from group-hunting and
solitary predators in unprecedented detail, we calibrated and deployed accelerometer-
GPS collars during predator-prey chase sequences using packs of hound dogs (Canis
lupus familiaris, 26 kg, n = 4–5 per chase) pursuing simultaneously instrumented
solitary pumas (Puma concolor, 60 kg, n= 2). We then reconstructed chase paths, speed
and turning angle profiles, and energy demands for hounds and pumas to examine
performance andphysiological constraints associatedwith cursorial and cryptic hunting
modes, respectively. Interaction dynamics revealed how pumas successfully utilized
terrain (e.g., fleeing up steep, wooded hillsides) as well as evasive maneuvers (e.g.,
jumping into trees, running in figure-8 patterns) to increase their escape distance from
the overall faster hounds (avg. 2.3× faster). These adaptive strategies were essential to
evasion in light of the mean 1.6× higher mass-specific energetic costs of the chase for
pumas compared to hounds (mean: 0.76 vs. 1.29 kJ kg−1 min−1, respectively). On an
instantaneous basis, escapes were more costly for pumas, requiring exercise at ≥90%
of predicted V̇O2MAX and consuming as much energy per minute as approximately
5 min of active hunting. Our results demonstrate the marked investment of energy
for evasion by a large, solitary carnivore and the advantage of dynamic maneuvers to
postpone being overtaken by group-hunting canids.

Subjects Animal Behavior, Conservation Biology, Ecology, Environmental Sciences, Zoology
Keywords Large carnivore, Physiology, Movement ecology, Tradeoffs, Performance, Adaptive
strategies, Accelerometer, GPS telemetry, Hunting modes, Energetics

INTRODUCTION
Hunting modes in sympatric large carnivores have evolved and diversified, with members
of the families Felidae and Canidae exhibiting nearly opposite prey detection and capture
techniques characterized by cryptic ambushing or cursorial pursuit, respectively (Table
1). Gray wolves (Canis lupus), for example, often hunt cooperatively in packs (Mech,
1970; Mech, Smith & MacNulty, 2015) and rely on endurance pursuit (Snow, 1985; Poole

How to cite this article Bryce et al. (2017), Energetics and evasion dynamics of large predators and prey: pumas vs. hounds. PeerJ
5:e3701; DOI 10.7717/peerj.3701

https://peerj.com
mailto:cbryce@ucsc.edu
mailto:calebmbryce@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.3701
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.3701


Table 1 Comparison of hunting mode divergence observed in large felids and canids. Selected references for each topic (superscripts) are pro-
vided below.

Family Felidae Family Canidae

E.g., puma, leopard, jaguar E.g., gray wolf, hound, dingo

Hunting modea Cryptic stalking & pouncing; ‘‘Surprise &
subdue’’

Cursorial pursuit; ‘‘Charge & chase’’

Hunting socialityb Solitary Often group/pack
Relative prey selectivity and timingc Low (opportunistic); Prior to attack High (selective); Often during pursuit
Interaction with & risk imposed by preyd Short; Lower risk of injury/death Prolonged; Higher risk of injury/death
Kill site attributese Sufficient structural cover for concealment

during stalking and brief pursuit
Relatively open terrain that facilitates
prolonged pursuit

Scale of habitat features impacting hunt
successf

Small-scale habitat features Large-scale landscape heterogeneity

Relative activity and energetic demand of
hunt’s attack phase

High intensity, short duration Low intensity, long duration

Notes.
aHornocker, 1970; Koehler & Hornocker, 1991; Ruth & Murphy, 2009a; Seidensticker et al., 1973; Young & Goldman, 1946; Poole & Erickson, 2011; Snow, 1985;Mech & Korb, 1978;
Mech & Cluff, 2011.

bGittleman, 1989; Hornocker & Negri, 2009;Mech, Smith & MacNulty, 2015;Mech, 1970.
cHusseman et al., 2003;Wilmers, Post & Hastings, 2007; Kunkel et al., 1999; Okarma et al., 1997;Mech, Smith & MacNulty, 2015; Peterson & Ciucci, 2003; but see Karanth & Sun-
quist, 1995; Krumm et al., 2010.

dHornocker & Negri, 2009;Mech, Smith & MacNulty, 2015;Mech & Boitani, 2003.
eAlexander, Logan & Paquet, 2006; Hebblewhite & Merrill, 2008; Husseman et al., 2003; Ruth et al., 2011; Schmidt & Kuijper, 2015 and references therein.
fHebblewhite, Merrill & McDonald, 2005; Kauffman et al., 2007; Laundré & Hernández, 2003; Podgórski et al., 2008; Schmidt & Kuijper, 2015.

& Erickson, 2011), rather than speed or agility, to test and ultimately outperform more
vulnerable prey (Peterson & Ciucci, 2003; Mech, Smith & MacNulty, 2015). In contrast,
pumas (Puma concolor) exhibit an opportunistic (i.e., less selective, Husseman et al.,
2003; Wilmers, Post & Hastings, 2007), solitary and cryptic hunting mode by which they
stealthily ambush and overpower prey (Hornocker & Negri, 2009; Ruth & Murphy, 2009a)
through matching pounce force to prey size (Williams et al., 2014). Such divergence in
locomotion, sociality, prey selectivity, and even preferred terrain while hunting reduces
exploitative and interspecific competition (Husseman et al., 2003; Elbroch et al., 2015)
through spatiotemporal niche partitioning and has cascading, ecosystem-wide effects
(Rosenzweig, 1966; Linnell & Strand, 2000; Donadio & Buskirk, 2006; Elbroch et al., 2015).
Less is known, however, of how the fine-scale movement, performance, and metabolic
demands associated with these distinct predatory hunting modes interact to affect
predation success.

During a predation event, an animal’s ability to readily adjust its speed (Howland, 1974;
Domenici, 2001), acceleration (Combes et al., 2012; Wilson et al., 2013b), and turn capacity
(Howland, 1974; Maresh et al., 2004; Wilson et al., 2013a) becomes critical for survival.
Despite its relative brevity, the attack phase of the hunt may be the most energetically
expensive stage of prey acquisition, particularly for ambush predators (Williams et al.,
2014). Given the two-dimensional confines of the terrestrial environment, both predators
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and prey have restricted behavioral options during this critical phase and are primarily
left with modulating their speed (Elliott, Cowan & Holling, 1977) and/or maneuverability
(Howland, 1974) in order to hunt successfully or survive, respectively (reviewed in Wilson
et al., 2015). Furthermore, these constraints may result in an ‘‘arms race’’ evolutionary
escalation of matched, specialized morphologies and behavioral strategies that promote
capture ability or evasion capacity in species that have co-evolved (Brodie & Brodie, 1999;
Cortez, 2011), although the strength of selective forces acting on predators vs. prey may
differ (i.e., the ‘‘life-dinner principle’’, Dawkins & Krebs, 1979).

The impacts of locomotor performance and energetics in altering chase outcomes has
long been recognized, with the majority of our understanding of these interactions coming
from studies of animals maneuvering in aerial (Warrick, 1998; Hedenström & Rosén, 2001;
Combes et al., 2012) or aquatic (Domenici & Blake, 1997; Domenici, 2001) environments.
Considerably less attention has been given to describing these complex dynamics in
terrestrial species, particularly large carnivores and their prey (Wilmers et al., 2015). This
is likely because our ability to describe such interactions is substantially impaired by the
wide-ranging, often cryptic behaviors of these mammals (Gese, 2001; Williams et al., 2014;
Wang, Allen & Wilmers, 2015). Recently, however, advancements and miniaturization of
biologging sensor technology now enable scientists to concurrently measure previously
unavailable metrics including the fine-scale behavior, physiological performance, and
energetics of wild animals (Kays et al., 2015; Wilmers et al., 2015). In addition, these novel
tools have the capacity to quantify chase dynamics and identify features of the landscape
and the animals themselves that determine whether or not prey evade capture (Wilson et
al., 2013a).

Here, using simultaneously instrumented pumas and scent hounds (Canis lupus
familiaris), we examined the performance and energetic tradeoffs of divergent terrestrial
hunting modes in real time. Packs of trained hounds pursued solitary pumas in need of
recapture for a separate monitoring study and afforded a comprehensive look at hound
group hunting cohesion and its effect on puma maximal performance escape tactics in
rugged terrain. Given their local adaptation and stalk-and-pounce hunting mode, we
predicted that pumas would exhibit greater acceleration, top speed, and turning ability
in rugged terrain relative to hounds, but could only sustain this peak performance over a
short distance and duration. Furthermore, we predicted that the cursorial hounds would
compensate for poorer sprinting performance by coursing continually over long distances
at slower speeds with greater energetic efficiency relative to pumas. Due to the scarcity of
studies investigating detailed chase performance parameters and their associated metabolic
costs in terrestrial mammals, our goal was to assess how terrain and evolved differences
in morphology, physiology, and behavioral strategies among large felids and canids affect
chase dynamics and outcomes.

MATERIALS & METHODS
Collar & energetic calibrations
We used a laboratory-to-field approach in which the locomotor biomechanics and
energetics of scent hounds (n= 7, 24.2 ± 0.9 kg, mean ± SE) and captive pumas
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(n= 3, 65.7 ± 4.4 kg) instrumented with accelerometer-GPS collars were measured in an
enclosure and laboratory environment prior to deployment on free-ranging conspecifics
in the wild (Bryce & Williams, 2017; Wang, Allen & Wilmers, 2015; Williams et al., 2014;
Wilmers et al., 2015). Hounds wore a 16 Hz accelerometer (TDR10-X, Wildlife Computers,
Redmond, WA, USA) affixed to a GPS collar (Astro, Garmin Ltd, Switzerland) capable
of taking a GPS satellite fix every 3 s (total collar mass = 328 g) and pumas wore an
integrated accelerometer-GPS collar (GPS Plus, Vectronics Aerospace, Germany; total
collar mass = 480 g) that sampled acceleration continuously at 32 Hz and took GPS
fixes every 6 s in the field during hound-assisted puma recaptures. For both collar types,
tri-axial accelerometer orientation was such that the X-, Y -, and Z - axes were parallel to
the transverse, anterior-posterior, and the dorsal-ventral planes of the animal, respectively.
For collar calibration, captive pumas (Williams et al., 2014; Wang, Allen & Wilmers, 2015)
and hounds (Bryce & Williams, 2017) were filmed (Sony HDR-CX290/B, 1080 HD, 60 p)
moving across a range of natural speeds (rest to 2 m s−1 and 4.7 m s−1, respectively) while
on a treadmill enclosed by a metabolic chamber. Collar-derived accelerometer signatures
were then correlated to gait-specific locomotor costs by simultaneously measuring oxygen
consumption (V̇O2) and overall dynamic body acceleration (ODBA; Qasem et al., 2012;
Wilson et al., 2006) of the animals during steady-state resting and treadmill running
(Williams et al., 2014; Bryce & Williams, 2017). Because both speed and metabolic rate
are linked to the dynamic component of an animal’s body acceleration (Gleiss, Wilson &
Shepard, 2011; Bidder, Qasem &Wilson, 2012; Qasem et al., 2012; Bidder et al., 2012), we
used ODBA to translate sensor output from the collars into the speed, turning maneuvers,
and energetics of free-ranging individuals.

Fieldwork
An estimated population of 50–100 pumas resides in our 1,700 km2 study area in the Santa
Cruz Mountains of California (37◦10.00′N, 122◦3.00′W). The climate is Mediterranean,
and elevation ranges from sea level to 1,155 m with rugged, forested canyons characterizing
much of the preferred puma habitat. Human development (ranging from low-density to
urban) is surrounded by native vegetation comprised of redwood and Douglas fir, oak
woodland, coastal scrubland, and grassland communities. As a result, pumas and native
mesopredators (i.e., coyotes, foxes, and bobcats) in the region exhibit spatial and temporal
partitioning of activities that varies with human use (Wang, Smith & Wilmers, in press;
Wilmers et al., 2013; Smith, Wang & Wilmers, 2015; Smith, Wang & Wilmers, 2016; Wang,
Allen & Wilmers, 2015).

Previous work validated the use of accelerometer-GPS collars for describing
spatiotemporally explicit puma energetics (Wang, Smith & Wilmers, in press; Williams
et al., 2014) and behaviors (Wang, Allen & Wilmers, 2015) in the field. Here, we separately
recaptured two adult male pumas (36 M and 26 M, 59.7 ± 0.7 kg) in autumn 2015
using packs of 5 and 4 hounds (n= 8, 24.3 ± 0.8 kg;Wilmers et al., 2013), respectively. We
took advantage of this routine capture technique to simultaneously record and quantify the
detailed chase-escape dynamics and associated energetic costs for hounds and pumas. In the
field, we filmed (Sony HDR-CX290/B, 1080 HD, 60 p) the hound collar being manually
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shaken prior to and immediately following deployment for subsequent accelerometer
and GPS clock synchronization to Greenwich Mean Time (GMT). Similarly, we filmed
the screen (including the clock) of the handheld UHF terminal (Vectronic Aerospace,
Germany) while uploading the rapid GPS fix schedule to later synchronize the exact time
of the puma collar schedule upload to that of the hound collar clock.

Puma chases occurred during daylight hours between 09:00 and 15:00 local time, a
period that typically corresponds with inactivity for these nocturnal hunters (Fig. S1). Each
puma initially escaped into terrain that precluded darting. As a result, we re-chased each
puma after several hours and thus measured a total of four puma pursuits by hounds. All
hounds were released simultaneously for each recapture, and although only one hound in
each chase wore the combined accelerometer-GPS collar, all hounds wore identical GPS
tracking collars to enable an analysis of hound pack hunting dynamics. After escaping
to a tree suitable for darting, pumas were tranquilized with Telazol at a concentration of
100 mg/mL, measured, and re-collared while we collected the previous collar for chase
reconstruction and analysis.

Ethics statement
This study was conducted in strict accordance with animal ethics including capture
and handling as approved by the California Department of Fish and Wildlife
(Scientific Collection Permit #SC-11968) and the UC Santa Cruz Animal Care and Use
Committee (IACUC Protocol #Wilmc1101). All human interventions including capture,
administration of immobilizing drugs, radio collaring, monitoring were done to minimize
negative/adverse impacts on the welfare of the study species.

Analyses
From each chase, we quantified the speed, turning, energy expenditure, and elevation profile
run by each instrumented animal. Instantaneous energetics and cost of transport (COT,
the energy expended per meter) of pumas and hounds were determined by correlating 2 s
smoothed ODBA (Wilson et al., 2006; Shepard et al., 2008), to laboratory-derived rates of
oxygen consumption. We then used Eqn. (5) from Williams et al. (2014) to compare the
COT of 60 kg pumas during typical 2-hour pre-kill active hunting activity (i.e., searching
and stalking) to that of the brief, high intensity escape bouts during hound-assisted
recapture. To assess the extent of anaerobic exercise for each species, we compared
accelerometer-derived estimates of V̇O2 during chases to published values of V̇O2MAX for
lions (approx. 52 ml O2 kg−1 min−1; Taylor et al., 1980; Williams et al., 2014) and dogs
(approx. 160 ml O2 kg−1 min−1, Seeherman et al., 1981;Weibel et al., 1983) of similar mass.

Overground pursuit and escape speeds were quantified by GPS-derived means for all
animals, with accelerometer-derived speeds also computed for both pumas and focal
hounds instrumented with combined sensors. The proportion of time spent not moving
within each chase was calculated for each species based on the number of 2-secondwindows
whereODBA<0.5 g.Wedownsampled all houndGPSdata to fixes taken every 6 s to account
for differences in GPS sample rate during chases and permit direct comparisons of hound
and puma spatial datasets. The precise start and end of pursuits and escapes for hounds
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and pumas, respectively, were determined by post-hoc comparison of GMT-synchronized
video recordings obtained in the field and from each collar’s raw accelerometer output. The
beginning of each escape was readily apparent from puma accelerometer records, as each
animal had been resting prior to hound release. Tag synchronization and data visualization
was performed in Igor Pro (Wavemetrics, Lake Oswego, OR, USA). Statistical analyses and
figures were produced using JMP Pro13 (SAS Institute Inc., Cary, NC, USA), program
R (v. 3.1.1; R Core Team, 2014), and Matlab (Mathworks Inc, Natick, MA, USA). Study
results are expressed as the mean ± SE (α= 0.05, a priori).

RESULTS
Captive calibrations
For both hounds and pumas, mass-specific metabolic rate increased linearly as a function
of ODBA as described previously for a variety of other terrestrial quadruped species (e.g.,
Brown et al., 2013; Halsey et al., 2009; Wilmers et al., 2015), according to

V̇O2 HOUND= 22.87 ·ODBA+6.39; (r2= 0.86,n= 83,p< 0.001), (1)

V̇O2 PUMA= 58.42 ·ODBA+3.52; (r2= 0.97,n= 9,p< 0.001), (2)

respectively, where V̇O2 is in ml O2 kg−1 min−1 and ODBA is in g. Similarly, speed was
strongly predicted fromODBA (Bidder, Qasem &Wilson, 2012; Bidder et al., 2012) for both
species according to

SpeedHOUND= 2.56 ·ODBA−0.32; (r2= 0.82,n= 83,p< 0.001), (3)

SpeedPUMA= 5.32 ·ODBA−0.42; (r2= 0.85,n= 9,p< 0.001) (4)

where speed is inm s−1 andODBA is in g. Equations (2) and (4), as well as additional puma
collar calibration data, are available fromWilliams et al. (2014) andWang et al. (2015).

Chase reconstructions
The duration, distance, average speed, elevation change, and number of hounds involved
in each recapture are summarized for hounds and pumas in Table 2. We present
individual chase tracks and parameters (Figs. 1, S2–S4) as well as a Google Earth Pro
(earth.google.com) visualization of chase 4 generated from synchronized puma and hound
collar data (Video S1). In general, mean chase distance was three times farther for hounds
(1,020 ± 249 m) than pumas (335 ± 63 m, t (6)=−2.66, p= 0.037, Table 2) because
we released hounds from a distance great enough to not startle pumas prior to release. In
this way, we measured the complete and varied escape maneuvers of the puma in response
to the approaching hounds. As a result of these longer pursuit distances, hound chase
duration (08:59 ± 03:05 mm:ss) was longer than the associated escape time in pumas
(03:48 ± 01:16 mm:ss). Compared to the initial escape, each puma’s second escape was
shorter in both distance (247 ± 69 vs. 423 ± 60 m) and duration (01:53 ± 00:56 vs. 05:44
± 01:12 mm:ss, Table 2).

As predicted, tortuosity (total distance traveled divided by straight-line distance from
start to end point of run) did not differ significantly between hounds and pumas when
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C. B. D. E. 

F. 

Figure 1 Chase 1 pursuit (red lines= hounds) and escape (blue line= puma) paths (A), including the
elevation profile for Brandy, a GPS-accelerometer collar equipped hound. Insets display ODBA (g, B),
speed (m s−1, C), and estimated mass-specific metabolic demand (V̇O2 in ml O2 kg−1 min−1, D) For (B),
(C), and (D), mean values are presented as dashed horizontal lines, and solid horizontal lines in (D) de-
pict V̇O2MAX for each species. Tortuosity plots (proportion of turns in each compass direction, (E) and
the elevation profile for the accelerometer-GPS-equipped hound (F) are also presented. Map data c© 2016
Google.

Table 2 Summary of pursuit and escape parameters from hounds and pumas, respectively.Measurement units are enclosed in parentheses. Av-
erage speed (m s−1) is GPS-rather than accelerometer-derived, and across-chase averages (±SE) are presented.

Hound Puma

Hounds
(n)

Distance
(m)

Duration
(mm:ss)

Avg.
speed
(m s−1)

Elev.
Gain/
Loss (m)

Distance
(m)

Duration
(mm:ss)

Avg.
speed
(m s−1)

Elev.
gain/loss
(m)

Chase 1 5 1,270 07:37 2.78 228/−161 482 06:56 1.16 121/−84
Chase 2 5 1,400 15:13 1.53 306/−157 178 02:48 1.06 70/−32
Chase 3 4 1,120 12:08 1.54 99/−339 363 04:15 1.33 88/−139
Chase 4 4 291 00:59 4.93 80/−75 316 00:57 5.54 89/−110
Average 1,020 08:39 2.7 178 (54) 334.8 03:44 2.27 92 (11)

(250) (03:05) (0.8) −183 (56) (62.8) (01:15) (1.09) −91 (23)

all individuals and chases were grouped (t (22): 1.04, p= 0.31; Table 3) because the
scent hounds roughly followed each puma’s escape path. Overground distance traveled
averaged 2.3 to 2.9 times farther than straight-line distance, indicating extent of turning
maneuvers while running through rugged terrain. To prolong the time until captured,
pumas employed several adaptive strategies that compensated for physiological constraints
and being outnumbered. Evasive maneuvers such as temporarily jumping into trees,
running hairpin turns or figure-of-8 patterns, and fleeing up steep, wooded hillsides were
all used repeatedly to increase escape distance and postpone being overtaken (Table S1).
For example, when the hounds were within 35 m of puma 36 M (chase 1), the puma ran
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Table 3 Average (±SE) chase tortuosity and speed performance during hound-assisted puma recaptures. Average and maximum speeds (m s−1)
are presented for both GPS and accelerometer-derived estimates. Sample sizes and measurement units are enclosed in parentheses, and results from
Welch two-sample t -tests comparing hound and puma data are included.

GPS speed (m s−1) Accel. speed (m s−1)

Chase Species (animals) Path tortuosity Avg. Max. Avg. Max.

1 Hounds (n= 5) 2.01± 0.08 2.33± 0.09 8.53± 0.29 3.07± 0.07 5.2
Puma 36 M 2.22 0.93± 0.21 5.27 3.69± 0.27 14.5

t =−6.5 t = 2.3
p< 0.01* p= 0.02*

2 Hounds (n= 5) 3.61± 0.21 1.53± 0.03 7.5± 0.45 2.43± 0.05 5.93
Puma 36 M 3.34 0.56± 0.17 2.89 3.49± 0.34 15.0

t =−6.4 t = 3.1
p< 0.01* p< 0.01*

3 Hounds (n= 4) 1.98± 0.09 1.35± 0.04 5.5± 0.87 3.32± 0.06 6.4
Puma 26 M 4.95 0.48± 0.11 2.38 2.85± 0.2 11.8

t =−8.7 t =−2.2
p< 0.01* p= 0.03*

4 Hounds (n= 4) 1.42± 0.06 3.04± 0.2 5.89± 0.45 5.35± 0.15 6.35
Puma 26 M 1.15 2.32± 0.51 3.86 11.06± 0.5 14.49

t =−1.4 t = 12.1
p= 0.16 p< 0.01*

Avg. Hound 2.32± 0.24 1.7± 0.03 7.0± 0.38 3.89± 0.18 5.97± 0.28
Puma 2.92± 0.52 0.74± 0.09 3.6± 0.63 2.94± 0.04 13.9± 0.73

t = 1.04 t =−10.4 t =−3.9 t = 5.2 t = 10.3
p= 0.31 p< 0.01* p< 0.01* p< 0.01* p< 0.01*

Notes.
*Denotes significant relationship (p≤ 0.05). GPS speeds are inherently averaged over 6 s, whereas the accelerometer speeds are near instantaneous (see methods).

a figure-of-8 pattern and briefly jumped into a tree. As a result, hound-puma separation
distance increased by nearly 15 m, and the puma’s capture was delayed by an additional
5 min (Fig. S5).

Overall average chase speed, as measured by chase distance divided by chase duration,
was similar between species (2.7± 0.8 m s−1 and 2.3 ± 1.09 m s−1 for hounds and pumas,
respectively; t (6)=−0.31, p= 0.77, Table 2). However, GPS-derived average speeds from
all hounds (including those not outfitted with accelerometers) and pumas suggested that,
across chases, hound pursuit speed was twice that of the escaping pumas (1.7 vs. 0.74 m s−1

for hounds and pumas, respectively; t (1870)=−10.4, p< 0.01; Table 3, Fig. 2), since
pumas spent larger proportions of each encounter stationary (avg. 31% vs. 15% stationary
for pumas and hounds, respectively; t (6)= 1.37, p= 0.22). Using accelerometer-derived
speed estimates (Eqs. (3) and (4)) to resolve running dynamics in finer temporal resolution,
we note that pumas briefly hit peak speeds in excess of 14m s−1, more than twice the top
speed of the pursuing hounds (5.2–6.3m s−1, Table 3). Puma escapes were characterized by
sequential high-speed evasive maneuvers interspersed with slow, low acceleration periods
(Fig. 3). In contrast, hound pursuit speeds were more constant over the course of each
chase (Fig. 1C and Figs. S2–S4C).
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Figure 2 GPS-derived pursuit and escape speeds for hounds (red) and pumas (blue), respectively, dur-
ing all chases. The mean (±SE) speeds, in m/s, for hounds (1.7± 0.03) and pumas (0.74± 0.09) are de-
picted as dashed vertical lines.

Immediately after release, all hounds concurrently worked to detect the nearby puma’s
scent and give chase. Average hound chase speed did not differ across individuals for both
pursuits of puma 36 M (chase 1: 2.52 ± 0.07 m s−1, F4,711: 0.71, p= 0.59; chase 2: 1.74 ±
0.03 m s−1, F4, 1,653: 1.95, p= 0.1), but Hound 4 (Crocket) was significantly slower than
the three other hounds during both pursuits of puma 26 M (Hound 4: 1.37 ± 0.06 m s−1,
others: 1.71 ± 0.04 m s−1; t988: −4.4, p< 0.001). This was probably a result of Hound
4’s age (11), over twice as old as the other hounds (average age of 5) involved in 26 M’s
recapture. Hound group cohesion (the spacing of individual members in proximity to the
moving group centroid, measured every 3 s) varied across chases (Fig. 4), likely due to
interacting effects including pack composition, individual characteristics (e.g., experience,
age, sex), topographic complexity, and puma scent freshness. Tighter spatial clustering
was observed between the five members of the hound pack pursuing puma 36 M (Figs.
4A and 4B) than that of the 4-member pack that chased puma 26 M (Figs. 4C and 4D).
Across chases, the maximum path deviation of individual hounds from the centroid of the
moving group averaged 13.1 (±2.8) meters. No single hound was ever beyond 55 m of the
true path of the puma, although the average maximum deviation was 19.1 ±11.7 m.

Energetic demands
Across chases, the metabolic rates (kJ min−1) of pumas during escape (76.5 ± 15.1) were
nearly four times higher than those of the pursuing hounds (20.1 ± 15.1, t (6)= 2.65,
p= 0.038; Fig. 5). On a mass-specific basis, metabolic rates (kJ kg min−1) were still >1.6×
greater in pumas relative to hounds (1.29 ± 0.27 vs. 0.76 ± 0.27 kJ kg min−1). Similarly,
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Figure 3 Escape acceleration signatures of adult male pumas 36 (A, B) and 26 (C, D). Acceleration (g)
is scaled to the same range for comparison. Chase distance is in m and chase duration is in mm:ss. Colors
correspond to pumas’ accelerometer-GPS collar orientation in the X (transverse sway, black), Y (anterior-
posterior surge, blue), and Z (dorsal-ventral heave, red) planes.

COT (J kg−1 m−1) was >2× as high for pumas (11.7 ± 1.4) than hounds (5.5 ± 1.4,
t (6)= 3.05, p= 0.023; Fig. 5).

Hounds remained below their gas exchange threshold (i.e., V̇O2MAX) for the duration
of pursuits, with peak hound V̇O2 estimates during the highest-intensity chase (chase 4)
of 60 ml O2 kg−1 min−1, or just 40% of V̇O2MAX (Fig. 6). In contrast, pumas routinely
exceeded V̇O2MAX during escapes, with an average of 52.5 ± 16% (range: 32–100%) of
each escape requiring energy from anaerobic metabolism.

Exercise effort was comparatively larger for pumas compared to hounds (Figs. 1D, 6
and Figs. S2–S4D) and on average, one minute spent escaping cost pumas 4.64 × (±1.3)
as much energy as a typical minute spent actively hunting. In other words, the average
puma escape duration of 03:48 (±01:16) was metabolically equivalent to about 18 min of
routine, active hunting.

DISCUSSION
In quantifying the fine-scale pursuit and evasion dynamics of two large carnivores, including
free-ranging, cryptic pumas, we present evidence for morphological and physiological
constraints imposed by specialization towards divergent hunting modes. Although the
highly cursorial, endurance-adapted canids (here, scent hounds) exhibited relatively poor
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Figure 4 Hound pursuit paths (A–D) and 2D-spatial histograms (E–H) of pack cohesion over the
course of each chase, with black arrows indicating direction of chase. Every 3 s, the group centroid
throughout each pursuit path is marked as a red plus (+). In the spatial histogram insets, the relative
position of each hound relative to the group centroid is scaled by color, with warm colors representing
close group cohesion and cool colors depicting more distant spacing.

turning ability and maximum speed compared with pumas, these animals maintained
lower metabolic rates (Fig. 5B) and transport costs (Fig. 5D) than their felid quarry. Canids
have a higher index of aerobic athleticism (Gillooly, Gomez & Mavrodiev, 2017; Taylor et
al., 1987; Weibel et al., 1983), thanks to relatively larger hearts (Williams et al., 2015) and
greater lung volumes (Kreeger, 2003;Murphy & Ruth, 2009) compared with felids of similar
size. Like other endurance-adapted species (e.g., humans, horses), during high-intensity
muscular exercise, canids likely exhibit higher critical speed/power and lower energy storage
(W′) than felids (Jones et al., 2010; Poole et al., 2016). Canid skeletal specializations include
‘box-like’ elbow joints and limbs locked in a more prone position (Figueirido et al., 2015),
enabling wolves, for example, to travel for several kilometers at 56–64 km hr−1 (Mech,
1970;Mech, Smith & MacNulty, 2015), pursue prey over distances in excess of 20 km (Mech
& Korb, 1978; Mech, Smith & MacNulty, 2015), and cover 76 km in 12 h (Mech & Cluff,
2011). As with other social canids, hounds worked together effectively as a pack (Fig. 4) to
detect and maintain each puma’s scent while giving chase through steep terrain and dense
brush understory. Our results indicate that group-hunting hounds exhibit fission–fusion
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Figure 5 Energetic costs of pursuit and evasion for hounds (white) and pumas (grey), respectively,
summarized across four chases. Total metabolic cost (kJ, A), metabolic rate (kJ min−1, B), mass-specific
metabolic rate (kJ kg−1 min−1, C), and cost of transport (COT, J kg−1 m−1, D) are shown. Asterisks (*) de-
note significant (p≤ 0.05) differences between species.

spatial dynamics while giving chase. Furthermore, they suggest that pack size as well as the
age, sex, and experience level of individuals can influence these complex dynamics. These
and many other factors have been shown to impact group composition and kill success in
group-hunting predators (reviewed in Gittleman, 1989).

In contrast, as solitary, highly adapted stalk-and-pounce predators, pumas rely heavily
on an element of surprise coupled with a short pursuit (≤10 m, Laundré & Hernández,
2003) before making contact with and subduing prey (Murphy & Ruth, 2009). Compared
to canids, in felids, pouncing and grappling with prey are aided by wider elbow joints
(Figueirido et al., 2015), greater spinal flexibility (Spoor & Badoux, 1988; Ruben, 2010), and
other limb and pelvic adaptations (Taylor, 1989).We documented the extreme performance
capabilities of this ambush-hunting mode (Table 3 and Fig. 3; also seeWilliams et al., 2014)
as well as the physiological limitations for stamina exacted during the flight response
(Figs. 5 and 6). For example, although brief, the maximum puma escape G-force
measurements (Fig. 3) in excess of ±5 g are similar to those experienced during an
Olympic luge race or under maximum braking force in a Formula 1 racecar (Gforces.net,
2010). Such peak performance capacity is energetically expensive (Figs. 1D, 6, S2D–S4D),

Bryce et al. (2017), PeerJ, DOI 10.7717/peerj.3701 12/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.3701#supp-4
http://dx.doi.org/10.7717/peerj.3701#supp-6
http://dx.doi.org/10.7717/peerj.3701


Figure 6 Estimated meanmetabolic rate (V̇O2, ml O2 kg−1 min−1) expressed as a percentage of
V̇O2MAX for hounds (red) and pumas (blue) during each chase.

and each pumas’ second escape was much shorter in distance and duration. In escape 4, for
example, puma 26 M’s brief burst of speed (Tables 2 and 3; Fig. S4) required short-term
energy stores well beyond those met aerobically (i.e., above the gas-exchange threshold;
Fig. 6). Our recapture results provide field-based empirical support for the locomotor
ramifications of these hunting mode differences between large canids and felids.

Describing species-specific energetic costs and movement ecology can elucidate
population-level consequences of anthropogenic disturbance and environmental change
(Stephens & Krebs, 1986; Gorman et al., 1998; Wikelski & Cooke, 2006; Somero, 2011;
Seebacher & Franklin, 2012; Cooke et al., 2013; Humphries & McCann, 2014; Tomlinson
et al., 2014; Laundré, 2014; Scantlebury et al., 2014; Wong & Candolin, 2014). Cumulative
costs associated with exposure to disturbance can tip the energy balance for large carnivores
and potentially lead to demographic changes that reverberate through the ecological
community (Ripple et al., 2014; New et al., 2014; King et al., 2015).

A recent terrestrial predator–prey pursuit model developed by Wilson et al. (2015)
suggested that during predation interactions, the larger animal would be absolutely faster,
but have inferior turning ability. Using our GPS-accelerometer datasets, we found greater
maximum speeds and turning performance in pumas (weighing over twice the mass of
each hound), but slower average speeds. Differences between our findings and predictions
of the Wilson et al. model can be explained in part by recognizing our study’s violation
of several underlying model assumptions. For instance, our recaptures did not occur
between a solitary predator pursuing solitary prey on flat and homogenous terrain, nor
were the predator(s) and prey morphologically similar. In addition, some differences may
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be explained by anatomical and physiological specialization in canids and felids, as well
as local adaptations to rugged topography enhancing momentary escape performance
in pumas.

We recognize that our opportunistic hound-assisted puma recaptures constitute semi-
natural interactions, but nevertheless their analysis serves as an important first step
in understanding the complexities and tradeoffs of locomotor performance vs. energy
expenditure in large felids and canids (Hubel et al., 2016). For example, recaptures also
enabled us to record the maximal or near-maximal performance capacity of a wild felid
predator, shedding light on hunting adaptations for, and limits to, managing speed,
maneuverability, and energy demand during prey capture. Our approach also provides
a framework for quantifying natural competitive or predatory interactions and their
outcomes in the future. Although dogs can adversely affect free-ranging carnivore behavior
(e.g., Vanak et al., 2013; Wierzbowska et al., 2016), hound-elicited escapes by pumas may
reflect direct interspecific interactions between wolf packs and solitary pumas in sympatric
landscapes. While some evidence suggests that pumas are capable of killing subadult (Ruth
& Murphy, 2009b) and adult wolves (Schmidt & Gunson, 1985), the pack hunting strategy
of wolves generally makes them dominant competitors against solitary pumas during direct
conflicts (Husseman et al., 2003; Kortello, Hurd & Murray, 2007; Ruth & Murphy, 2009b;
Ruth et al., 2011; Bartnick et al., 2013).

Where they coexist, wolves and pumas often exhibit temporal as well as spatial niche
partitioning, with pumas often utilizing edge habitat (Laundré & Hernández, 2003) or
rugged terrain (e.g., steep slopes, boulders) dominated by vegetative cover for concealment
when hunting (Logan & Irwin, 1985; Laing & Lindzey, 1991; Williams, McCarthy & Picton,
1995; Jalkotzy, Ross & Wierzchowski, 2002; Husseman et al., 2003). Wolves, in comparison,
tend to prefer valley bottoms and open country for hunting (Husseman et al., 2003;
Alexander, Logan & Paquet, 2006; Atwood, Gese & Kunkel, 2007; Kortello, Hurd & Murray,
2007). In addition to being critical for hunting cover (Kleiman & Eisenberg, 1973), pumas
and other solitary felids rely on structural complexity and vegetative cover as escape terrain
during direct intra- and interspecific conflict (Duke, 2001; Ruth, 2004; Dickson, Jenness &
Beier, 2005; Kortello, Hurd & Murray, 2007). Furthermore, trees may serve as primary and
immediate refuge from wolves and other threats as pumas do not readily utilize trees for
other purposes, such as arboreal prey caching and consumption observed in other felids
(e.g., lynx, leopards; Balme et al., 2017;Vander Waal, 1990).We observed this phenomenon
in the field; each puma escape was characterized by agile, high-performance maneuvering
that terminatedwith jumping into a tree immediately prior to being overtaken by the hound
pack. Maintaining adequate vegetative cover therefore provides a dual concealment-safety
benefit to pumas, indicating the importance of protecting complex habitat, in addition to
adequate prey, to ensure the long-term persistence of these cryptic predators (Beier, 2009;
Burdett et al., 2010; Laundré, 2014; Williams et al., 2014; Wilmers et al., 2013), especially
where they co-occur with wolves (Bartnick et al., 2013; Kortello, Hurd & Murray, 2007;
Ruth & Murphy, 2009a).
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